越来越多的机器学习问题,例如现有算法的鲁棒或对抗性变体,需要最小化自己定义为最大值的损耗函数。在(内部)最大化问题上携带随机梯度上升(SGA)步骤的环路,然后在(外部)最小化上进行SGD步骤,称为时期随机梯度\脑短幕(ESGDA)。虽然成功在实践中,ESGDA的理论分析仍然具有挑战性,但没有明确指导内部环路尺寸的选择,也没有内部/外部步长尺寸之间的相互作用。我们提出RSGDA(随机SGDA),是ESGDA的变种,具有随机环形尺寸,具有更简单的理论分析。 RSGDA在非透露X分钟/强凹幅最大设置上使用时,rsgda附带第一个(在SGDA算法中)几乎肯定的融合速率。 RSGDA可以使用最佳环路大小进行参数化,以保证已知为SGDA的最佳收敛速率。我们在玩具和更大的尺度问题上测试RSGDA,使用作为测试用最佳运输的分布鲁棒优化和单细胞数据匹配。
translated by 谷歌翻译
连接设备的快速增长导致了新型网络安全威胁的扩散,称为零日攻击。传统的基于行为的ID依靠DNN来检测这些攻击。用于训练DNN的数据集的质量在检测性能中起着至关重要的作用,而代表性不足的样品导致性能不佳。在本文中,我们开发和评估DBN在连接设备网络中检测网络攻击方面的性能。CICIDS2017数据集用于训练和评估我们提出的DBN方法的性能。应用和评估了几种类平衡技术。最后,我们将方法与常规的MLP模型和现有的最新方法进行比较。我们提出的DBN方法显示出竞争性和有希望的结果,并且在培训数据集中攻击不足的攻击中的检测方面有显着改善。
translated by 谷歌翻译
为了识别具有测量开关信号的开关系统,该工作旨在分析切换策略对估计误差的影响。假定识别数据是从全球渐近或边缘稳定的开关系统中收集的开关中,该系统是任意或受到平均停留时间约束的。然后由最小二乘(LS)估计器估算开关系统。为了捕获开关策略参数对LS估计误差的影响,在这项工作中开发了有限样本误差界。获得的误差边界表明,仅有稳定模式时,估计误差是开关参数的对数。但是,当有不稳定的模式时,随着开关参数的变化,估计误差界限可能会线性增加。这表明在存在不稳定模式的情况下,应正确设计开关策略,以避免估计误差的显着增加。
translated by 谷歌翻译
已知生成对抗网络(GANS)的培训以难以收敛。本文首先确认了这一收敛问题背后的罪魁祸首之一:缺乏凸起的GANS目标功能,因此GANS模型的良好问题。然后,它提出了一种随机控制方法,用于GAN训练中的超参数调整。In particular, it presents an optimal solution for adaptive learning rate which depends on the convexity of the objective function, and builds a precise relation between improper choices of learning rate and explosion in GANs training.最后,经验研究表明,培训算法包含这种选择方法优于标准的训练算法。
translated by 谷歌翻译
联合学习允许客户在保持数据本地时协同学习统计模型。联合学习最初用于培训一个独特的全局模型来为所有客户提供服务,但是当客户的本地数据分布是异构时,这种方法可能是次优。为了解决此限制,最近的个性化联合学习方法为每个客户提供单独的模型,同时仍然利用其他客户端提供的知识。在这项工作中,我们利用深神经网络从非表格数据中提取高质量矢量表示(嵌入),例如图像和文本的能力,提出基于本地记忆的个性化机制。根据全局模型提供的共享表示,将个性化与All-Nealest邻居(KNN)模型插入预先训练的全局模型。我们为所提出的方法提供泛化界限,我们展示了一套联合数据集,这种方法比最先进的方法实现了更高的准确性和公平性。
translated by 谷歌翻译
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
translated by 谷歌翻译